Home X ReleaseNotes x Install x Actions X ApplyFilter x Tutorial X Collections x
AllModules x

AllModules

The AllModules collection describes instances of all modules present in the currently loaded Basic

tags:
libraries. Collections
Applies to ...
Object Description

Application | Root class. When present, its name must be "application" but the object name is optional.

Syntax

[Application.]AllModules ()
[Application.]AllModules (index)
[Application.]AllModules (modulename)

Argumen
g|;1 ent Type |Returned value

absent | A Collection object

A Module object corresponding to the index-th item in the AllIModules() collection. The 1st
module is AIModules(0), the 2nd is AllModules(1) and so on ... The last one is
AllModules.Count - 1.

integer

index
long

modulename | string |A Module object having the argument as name. The argument is NOT case-sensitive.

Remarks

o Access2Base will scan first the modules present in the current Base document (".odb" file) or current non-Base

document containing one or more standalone forms (".odt", ".ods", ... file) and continue the search thru all currently
loaded libraries. The Access2Base library itself however will be skipped.
e The modulename argument is not case sensitive.

How to name modules ?

To manage potential homonyms among libraries, the name of a module consists in 3 components:

[[SCOPE.] [LIBRARY.]MODULE

, the first two being optional.

e The SCOPE is either

o GLOBAL grouping both the LibreOffice/OpenOffice Macros and Dialogs and the My Macros and Dialogs
catalogs of libraries.

o DOCUMENT grouping the libraries stored in the current document. This is the default.
e The LIBRARY component is the name of the library. The default is "Standard".

As such,

AllModules ("DOCUMENT.STANDARD .myModule")

is equivalent to:

AllModules ("myModule")

Error messages

Argument nr. 1 [Value ="..."7 is invalid

Out of array range or incorrect array size for collection AllModules()

Module '..." not found in the currently loaded libraries

See also ...

Collection
Module

Examples

Query the properties of a Basic module

Const cstModule = "myModule"

Const cstProc = "mySub"

Const vbext_pk_ Proc = 0 ! A Sub or Function procedure
Const cstStringToFind = "some string"

Dim oModule As Object, sProc As String, iProcType As Integer
Dim vStartLine As Variant, vStartColumn As Variant, vEndLine As Variant, vEndColumn As Vari

Set oModule = Application.AllModules (cstModule)
With oModule

DebugPrint "Name = " & .Name

DebugPrint "# of lines = " & .CountOfLines

DebugPrint "# of declaration lines = " & .CountOfdeclarationLines
DebugPrint "Lines 26 to 31 = " & .Lines (26, 6)

DebugPrint "# of lines in proc " & cstProc & " = " & .ProcCountLines (cstPrg
DebugPrint "Start line in proc " & cstProc & " = " & .ProcStartLine (cstProd
DebugPrint "Start body line in proc " & cstProc & " = " & .ProcBodyLine (cst

! Line 35 1is located within procedure sProc (of type iProcType)

sProc = .ProcOfLine (35, iProcType)

! Arguments are left uninitialized to consider the whole module
If .Find(cstStringToFind, vStartLine, vStartColumn, vEndLine, vEndColumn) T

End With

TraceConsole ()

Bookmark this page » » AllModules

