
tags:
HowTo

Home x Install x Full Index x Tutorial x EnumerateControls x FindOutTableExists x UseVariablesInSQL x CreateRecordsetFrom x AddRecordToRecordset x CountRecordsRecordset x

LimitsRecordset x MixAccess2baseAndUNO ! User's Guide x AllForms x DatabaseWindow x ShortcutNotationMore x DLookupSamples x CalculatedField x MultiSelectListboxSelectForm x

FillAutoControlValue x CarryToNewRecord x BrowseThruControls x TipTextForLongValues x AskBeforeSaving x Sync2Combos x ZoomOnImage x AddAllToBox x KeepFormsSynchro x

SelectListboxOnFirstLetters x MoveItemsBetweenListboxes x SimulateTabbed x SearchStandalone x CalculatorDialog x ExploreTables x ExtractDataTable x FindPositionRecordset x

DMedian function x DPercentile x ImportImages x ExportImages x CrossTabQuery x DbaccessFromCalc x

DbaccessFromCalc
(Q) How could I get data stored in a database from within a Calc cell formula ?

(R) Calc offers as a standard feature to insert data from database tables and queries via a specific browser that is invoked by using the View + Data Sources menu command or the F4 function key.

The Help files describe in detail how to proceed.
However the question here is, as an example : how is it possible to enter a product code in a cell and get in another calculated cell its description, knowing that the correspondence between both fields is somewhere in a database

table and not in the spreadsheet ?

Obviously, to not simplify the problem, we would appreciate to have things happen automatically, i.e. also when the sheet is configured to have its

Tools + Cell Contents

set to AutoCalculate, and without useless database accesses.

In the proposed solution we will go even further. The example shown will illustrate next 4 functionalities:

Use database data to populate a dropdown listbox.
Derive automatically the description from the selected item in the listbox.

Prepare a report with the heading derived from the database table field names.
Populate an array of data in the sheet extracted from the database and filtered by the choice in the dropdown box..

A solution

Let's consider next tables:

Categories table

Fields Field Type Primary

CategoryName Text

Description Text

Picture Binary

CategoryID BigInt Y

Products table

Fields Field Type Primary

CategoryID BigInt

ProductName Text

QuantityPerUnit Text

ReorderLevel Integer

SupplierID BigInt

UnitPrice Number

UnitsInStock Integer

UnitsOnOrder Integer

Discontinued Boolean

ProductID BigInt Y

Picture Image

1 von 3

The final purpose of the spreadsheet is to list all products belonging to the category selected by the user.

Preamble

The challenge will be to do next things apparently simultaneously without the user becoming aware of the underlying complexity:

to load the Access2Base macro library, only once

to open the database file (".odb") referring to the effective database, also only once
to extract the needed data only when relevant and every time it is, i.e. when some input parameter has been modified.

When Calc recomputes a worksheet, it sequences its computations in function of the respective arguments present in each cell formula.

For example, if

cell A1 is a number
C1 contains the formula "=A1*2"

and B1 contains the formula "=C1*C1"

the worksheet will not be recomputed from left to right, but in the sequence A1, C1, B1. In addition, C1 and B1 will be both recomputed automatically every time A1 receives another value.
Choosing in this matter either cells or "names" (defined by Insert + Names) does not make any difference. Names will be preferred if they do not need to be visible in the sheet.

The sequencing of computations done by Calc is the mean we will use to reach our challenge.

Global

To access the database we have to make use of a database object. Let's define it as a Global variable.

Such variables remain in life as long as

the AOO/LibO session is lasting
the module where it is declared is not edited.

Usually I declare Global variable in a separate module as such a module is unlikely to be modified often.

Global oMyDatabase As Variant

Define Name

Define a Name called IsConnected. Store in it the formula

=DBCONNECTED()

DBCONNECTED is a user-defined function and behaves exactly like any builtin Calc function or expression. It has no argument.

The code of the function is here:

Sub _Init()
Dim oLib As Object

Set oLib = GlobalScope.BasicLibraries
If oLib.hasByName("Access2Base") Then

oLib.loadLibrary("Access2Base")
End If

End Sub

Function DBConnected() As Variant
Dim sCalc As String

DBConnected = 0
If IsEmpty(oMyDatabase) Then

Call _Init() ' Load Basic libraries
Set oMyDatabase = OpenDatabase(".../TT%20NorthWind.odb") ' Put here the URL of the targeted database

End If
DBConnected = 1

End Function

The result is that the loading of the library is put on the computation path. There is no reason why Calc would require recomputation several times of IsConnected except while loading the spreadsheet.

Now we can build other formulas, like:

=IF(IsConnected;USERDEFINED(...);False)

being sure that such formulas will be evaluated by Calc only when the evaluation of IsConnected has been achieved.

Setup the dropdown box

Use the Data + Validity menu commands to define Criteria as being a Cell range, select the Show selection list checkbox and enter as Source next formula

=IF(IsConnected;CATEGORIESLIST();"")

The CATEGORIESLIST() function:

Function CategoriesList() As Variant
' Return the list of available product categories as a vector
Dim oRs As Object, sCatsRC() As Variant, sCats() As Variant, i As Integer

If Not IsEmpty(oMyDatabase) Then
Set oRs = oMyDatabase.OpenRecordset("SELECT [CategoryName] FROM [Categories] ORDER BY [CategoryName]")
sCatsRC = oRs.GetRows(1000) ' matrix (row, column)
sCats() = Array() ' Reduce to column only
ReDim sCats(0 To UBound(sCatsRC, 1))
For i = 0 To UBound(sCats)

sCats(i) = sCatsRC(i, 0)
Next i
CategoriesList = sCats()
oRs.mClose()

End If
End Function

Find description

The dropdown box is in cell B2. We put in cell D2 next formula:

=IF(IsConnected;CATLOOKUP(B2);"")

that will be recomputed by Calc each time the cell B2 is modified by the user.

The CATLOOKUP function:

Function CatLookup(ByVal pvArg As Variant) As Variant
If Not IsEmpty(oMyDatabase) Then CatLookup = oMyDatabase.DLookup("[Description]", "[Categories]", "[CategoryName]='" & pvArg & "'")

End Function

Fill the data

The data matrix will be inserted as an array formula (Ctrl + Shift + Enter) in cells D6:H35. Look at the AOO/LibO help to know more about them.

{=IF(IsConnected,PRODUCTSLOAD(B2),"")}

The PRODUCTSLOAD function:

Function ProductsLoad(ByVal pvCat As Variant) As Variant

2 von 3

Dim oRS As Object, sSQL As String, vResult() As Variant, i As Integer
Const cstSize = 30

If Not IsEmpty(oMyDatabase) Then
sSQL = "SELECT [ProductName] AS [Product], [QuantityPerUnit] AS [Quantity], [UnitsInStock] AS [Stock], [UnitPrice] AS [Price]" _

& ", [CompanyName] AS [Company]" _
& " FROM [Products], [Categories], [Suppliers]" _
& " WHERE [Products].[CategoryID] = [Categories].[CategoryID]" _
& " AND [Suppliers].[SupplierID] = [Products].[SupplierID]" _
& " AND [Categories].[CategoryName] = '" & pvCat & "'" _
& " ORDER BY [Product] ASC"

Set oRS = oMydatabase.Openrecordset(sSQL)
' Enumerate field names
vFields() = Array() ' Mandatory before resizing a variant
ReDim vFields(0 To oRS.Fields.Count - 1)
For i = 0 To UBound(vFields)

vFields(i) = oRS.Fields(i).Name
Next i
' fetch recordset data
vResult() = oRS.GetRows(cstSize)
oRS.mClose()
' To avoid #N/A
If UBound(vResult, 1) < cstSize Then

ReDim Preserve vResult(0 To cstSize, 0 To UBound(vResult, 2))
End If
ProductsLoad = vResult()

End If
End Function

A second Global variable is used here to store the field names in a more generic way:

Global vFields() As Variant

Headings

The title of the data matrix is again an array formula, put in cells D4:H4.

The G36>0 condition below makes that the heading cells are evaluated after the data cells. Indeed titles are extracted from the database in the same Sub as the data.

{=IF(AND(IsConnected,G36>0),DBTITLE(),"")}

associated with next code:

Function DbTitle() As Variant
If Not IsEmpty(oMyDatabase) Then

DbTitle() = vFields()
End If

End Function

Close the connection

Finally it is always recommended to clean the connection to the database.
Associate next code

Function DbClose()
Dim vEMPTY As Variant

If Not IsEmpty(oMyDatabase) Then oMyDatabase.mClose()
oMyDatabase = vEMPTY ' Reinitialize oMyDatabase to empty

End Function

with the Document closed event (Tools + Customize - Events tab).

See also

Close

DLookup
GetRows
OpenDatabase
OpenRecordset

Refer to ...

File Basic module

TT NorthWind Calc.ods
Connect
Globals

Bookmark this page » » DbaccessFromCalc

3 von 3

